1. PRELIMINARY ACTIVITIES

1.1. Unpack individual elements.
1.2. Take the exchanger elements out of the module sets and position the canal trough sections in appropriate connecting order (from the feeding module to the return module (Fig. 1)).

2. CANAL TROUGH INSTALLATION

2.1. The internal module frame is equipped with a frame connector (Fig. 2).
2.2. Insert the protruding frame stripe (A) into the profile of the next module frame (B).
2.3. Pull both trough modules together until the frame elements are evenly and tightly connected.
2.4. After the two modules have been joined, the canal trough connector settles automatically in its correct position.
2.5. Screw in the frame connector (outside the canal trough) with flange nuts M5 (C) in places indicated in Fig. 3. Straightness of the canal frame needs to be retained.
2.6. Screw together the canal trough connector (4 points inside the canal trough) with flange nuts M5.
2.7. Perform analogical operations according to items

3. EXCHANGER INSTALLATION

3.1. Put together individual parts of the exchanger in the specified order from the feeding module, through the internal module to the return module (Fig. 4) and connect them through sleeves pressing (D), in accordance with the Viega Instruction Manual and Specifications.
3.2. Settle the connected exchanger on specially prepared assembly skids (E) located in the canal trough. The exchanger is freely settled on the assembly skids (Fig. 5).
1. Plan and determine the place for installation of the trench heating unit. The unit should be positioned parallel to the wall (glazing). The distance from the wall or glazing is up to the user. If the external wall is well insulated, the trench unit can be directly adjacent to the wall. Usually, units are installed parallel to the wall, at a distance of 0 to 30 cm from the glazing. Curtains cannot be an obstacle to free circulation of the air in the trench.

2. Make a recess in the floor, sizing it so that the planned trench unit can be freely inserted in it and in accordance with the good building practice.

3. The thickness of the insulation under the trough and next to it should be adjusted to the flooring technology and the building insulation quality. The insulation layer is also to compensate for the discrete changes to the trough dimensions caused by temperature differences.

4. Insert the trench trough in the previously prepared hole in the floor.

5. Check the unit for the parallelism and the distance from the wall.

6. Even out and level the trench trough with the use of adjusting Allen bolts.

7. **Install the mounting spacers**

8. Fix the trench trough to the base with the use of ties or rawlplug screws. The empty spaces under the trough can be filled with polyurethane foam or self-levelling floor compound.

9. Insert the appropriate hydraulic accessories in the trough.

10. Once all the (hydraulic and electric) connections are made, the trough and particularly its frame should be protected against deformation for the time of making the final underlayment, in particular against modification of the inside dimensions of the frame. Failure to protect the trough frame may result in a disproportion of the platform size in relation to the frame size and in rejection of potential claims for damages. Use the mounting spacers supplied with the unit or cut a 20 mm thick board to the required size to completely cover the frame field.

11. The component that transmits the load of the platform to the ground (base) is the trough frame. It must be accurately covered with the floor compound (underlayment) from the bottom and on the sides up to a height depending on the type of the final flooring (parquet, tiles, panelling or other). Appropriate thickness and strength of the underlayment under the frame should be ensured in accordance with the projected service load. **NOTE!** The trench trough section is not designed to transmit any load.